17.1 INTRODUCTION

The problems of producing and characterizing antisera were radically altered when Köhler and Milstein (1975) demonstrated that antibody-producing hybrid cell lines could be generated by somatic cell hybridization. Within three years, antibodies of defined specificity produced by continuous cultures of monoclonal cell lines became routine laboratory reagents providing exquisite serological and biochemical probes (Oi et al. 1976). This chapter describes a modified version of the technique described by Galfre et al. (1977) to fuse murine spleen cells with the 8-azaguanine-resistant, nonsecreting mouse myeloma cell line NS-1 (a derivative of MOPC-21 (P3)). In this procedure polyethylene glycol is used as the fusion agent (Pontecorvo 1976) and Littlefield’s hypoxanthine-aminopterin-thymidine (HAT) medium (Littlefield 1964) is used for selecting stable, monoclonal antibody-producing hybrid cell lines.

From the start (immunizing mice and growing the myeloma cell parent) to the end (when stable, cloned cell lines have become established), this method requires three to four months of continuous bench work. In addition, the generation of monoclonal antibody-producing cell lines demands constant attention and should not be undertaken unless one can afford both the time and the effort. Moreover, it is necessary to establish the antibody detection system to analyze the products of the hybrid cell lines before beginning hybridization because there may not be sufficient time to work out technical problems after hybrid cells begin to grow.

Tissue culture facilities for generating antibody-producing hybrid cell lines minimally require the following equipment and supplies:

1. Tissue culture hood
2. Humidified incubator with a CO₂-in-air atmosphere
3. Bench top centrifuge
4. Inverted phase contrast microscope
5. Bright field microscope
6. Tissue culture supplies
7. Liquid nitrogen storage containers

In addition, investigators using these methods will require the laboratory equipment necessary for producing antibody in usable amounts, analyzing antibody activity, and characterizing the antibody molecules produced by the hybrids. The exact equipment and materials required for each of these operations will depend on the nature of the antibodies being produced and the scale to which production is carried out.

The procedure we describe for the development and use of antibody-producing hybrid cell lines (Figure 17.1) includes growing the parental myeloma cell line, immunizing mice to provide immune donor spleen cells, conducting the cell fusion, and selecting the resulting hybrids with HAT medium. Supernates of the surviving hybrid cell cultures are then tested for antibody activity. An aliquot of cells from the antibody-producing cultures is grown and prepared for freezing while another aliquot is employed in cloning the hybrids. To derive cloned cell lines, the cells are grown at limiting dilutions. Clones that secrete the desired antibody are expanded, and several aliquots of these clones are frozen while others are used for the large-scale production of antibody. The resulting antibodies are purified and characterized.
17.2 PREPARATION OF THE FUSION PARTNERS

A. NS-1 Myeloma Parent Cell Line*

NS-1, abbreviated from P3-NS-1-1, is a cell line derived from MOPC-21, a BALB/c myeloma cell line. NS-1 does not produce the MOPC-21 γ heavy chain; it synthesizes the original MOPC-21 κ chain but internally degrades it. This line is 8-azaguanine resistant and therefore susceptible to HAT selection (see Section 17.4). The advantage in using NS-1 as the fusion myeloma parent cell line, rather than other myeloma cell lines (such as P3-X63Ag8), is its inability to produce a heavy chain. Antibody-producing hybrid cell lines derived with this fusion partner will produce mixed molecules with only the MOPC-21 κ light chain; the molecules will not have both light and heavy chains derived from the myeloma cell (see Section 17.10).

* Three new cell lines have been developed for somatic cell hybridization with immune spleen cells to generate antibody-producing hybrid cell lines. The two mouse lines Sp2/0-Ag14 (Shulman et al. 1978) and P3X63-Ag8.653 (Kearney et al., submitted for publication) are total nonsecretors. They do not synthesize either light or heavy chains, and hybrid cells derived with these parental cell lines will only produce antibody of the spleen cell parent. The third cell line is a rat myeloma cell line, Y3-Ag1.2.3 (Galfré et al. 1979), which secretes light κ chains. Antibody-producing hybrid cell lines are derived from rat spleen cells fused with a mouse myeloma cell line are difficult to grow as tumors in either mice or rats. The development of this myeloma cell line permits the production of hybridomas using rat cells for both fusion partners. The resulting hybrids can be adoptively transferred for growth and antibody production in rats because these cells present no xenogenic antigens to the host.

Not all NS-1 cell lines are equivalent. Some sublines of NS-1 have been reported not to give rise to antibody-producing hybrid cell lines. Therefore, care should be taken when recloning NS-1. Recloning is necessary to maintain a homogeneous cell line; long-term maintenance of NS-1 (or any other cell line) in tissue culture gives rise to spontaneous genetic drift of the cell population. Such drift affects many characteristics, for example, continued resistance to 8-azaguanine. Upon recloning NS-1, testing of the new NS-1 clone for the ability to fuse with immune spleen cells and yield antibody-producing hybrid cell lines is recommended. This is a tedious procedure. If a particular cell line is a good fusion partner, establishing frozen stocks of the cells as a continual source of the original cell line is the best way of assuring continued success in generating antibody-producing hybrid cell lines.

1. Maintaining NS-1

MATERIALS AND REAGENTS

NS-1 myeloma cell line (P3-NS1-1; Cell Distribution Center, Salk Institute)
Culture medium:
- RPMI 1640
- L-glutamine
- Sodium pyruvate
- Penicillin
- Streptomycin
- Fetal calf serum (FCS), screened (see comment 1)
- CO₂ incubator, humidified
- 7% CO₂-in-air gas mixture
- Stationary T flasks, roller bottles, or Spinner flasks
1. Culture NS-1 cells in RPMI 1640 supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 50 units/ml penicillin, 50 µg/ml streptomycin, and 15% FCS in a humidified 7% CO₂ in air atmosphere at 37°C.

2. NS-1 can be grown either in stationary T flasks, roller bottles, or Spinner flasks. In any of these containers, NS-1 and hybrid cell lines derived from NS-1 grow to a maximum density of 2–5 × 10⁶ cells/ml with doubling time of 12–24 hours. When this density is reached, there is a precipitous fall in cell viability. Generally NS-1 cultures must be split (i.e., diluted either by removing the contents of the old flask and adding fresh medium or by addition to a new flask with medium) every 3–4 days. A 1-in-10 or 1-in-20 split, depending on the condition of the cells, is recommended. Cultures with cell densities lower than 10⁴ cells/ml grow poorly.

COMMENTS

1. The FCS should be a screened lot known to support the clonal growth of at least the parental myeloma cell line NS-1. To this capacity, clone NS-1 with batches of FCS by limiting dilution (see Section 17.7) without feeder cells. A good serum lot will support 100% cloning efficiencies of NS-1, but sera yielding 70–80% cloning efficiencies are satisfactory. Generally, 10–20% of the serum lots tested are suitable. Most commercial suppliers of FCS will reserve serum lots for three weeks while one is determining whether the lot is usable. Obviously, only serum lots with adequate quantities in reserve should be tested.

2. The 7% CO₂-in-air atmosphere assures a slightly acidic medium pH. NS-1 and hybrid cell lines derived from NS-1 grow better under such conditions. These cells are somewhat intolerant of basic pH medium. (Adequate buffering of RPMI 1640 medium is provided by 5–10% CO₂-in-air atmospheres.)

3. Should one find that a NS-1 cell culture has overgrown and is dying, it is better to start again from frozen stock than to attempt to salvage the culture. Selective forces in the dying cultures might result in the growth of cells with altered phenotypes that make them unsuitable fusion partners.

2. Preparation of NS-1 Fusion

A total of 1.5 × 10⁶ NS-1 cells is generally used for fusion. These cells should be in log-phase growth. To insure that the cells are in log-phase growth, they should be at a density of about 10⁴ cells/ml. Thus, 1–2 liters of NS-1 cells are grown in preparation for fusion. Cell viability at the time of collecting the cells should be greater than 95%. Because cell viability determinations with trypan blue are influenced by the presence of serum albumin, either the albumin must be washed away before cell counts are made or another method of determining viabilities must be used. A convenient method using acridine orange- and ethidium bromide and fluorescence microscopy is described in Section 1.15.

B. Immune Spleen Cells

Mice are generally immunized with limited immunization protocols to provide the immune spleen cells used for fusion. In most cases, hyperimmunization is not necessary.
1. If the antigen is soluble, prime mice intraperitoneally with 100 µg of antigen precipitated in alum, mixed with 2 x 10^5 killed *Bordetella pertussis* organisms. (See Section 2.5 for sources of reagents and procedures for alum precipitation of antigen.) Boost mice (intraperitoneally or intravenously) 1-3 weeks later with 10 µg aqueous antigen without *B. pertussis*. Use the spleen cells for fusion 3 days after the boost. Best results have been obtained using this immunization protocol. Alternatively, fusion can be done 3-4 days after the priming dose, or 3 days after a second boost.

2. If the antigen consists of cells, prime and boost mice intraperitoneally with 2 x 10^4 cells or less. The critical parameter to remember is that fusion should be done 3 days after the last antigen boost.

3. If hyperimmune mice are used as the spleen cell donor, the mice should be rested (generally 3-4 weeks) before receiving the final antigen boost prior to fusion.

17.3 FUSION OF NS-1 WITH IMMUNE SPLEEN CELLS

The immediate event in somatic cell hybridization is the fusion of cell membranes, generating multinucleated (generally binucleated) cells or heterokaryons in which the cell membranes of the fusion partners surround a common cytoplasm with two or more nuclei. In a matter of days, synkaryons form when the nuclei fuse and are capable of synchronous mitosis; in the process, a variable number of chromosomes of both fusion partners are lost. With subsequent cell divisions, more chromosomes are lost, but the hybrid cell line eventually stabilizes.

MATERIALS AND REAGENTS

- NS-1 myeloma cells and immune spleen cells (see Section 17.2)
- Medium (see Section 17.2A): with FCS (30 ml); without FCS (approximately 100 ml)
- 37°C water bath
- Glass beakers for preparing a makeshift water bath for use in a tissue culture hood
- Centrifuge tube, 50 ml, plastic (Corning Glass Works, #25330)
- Bench top centrifuge
- Pipettes, 1 ml and 10 ml
- Stopwatch (optional)
- 96-well cluster dish (Costar, #3596; see comment 2)
- 50% solution of polyethylene glycol (PEG) 1500 (BDH Chemicals): PEG 1500 comes as large waxy chunks. It should be odorless and white. Cut away and discard any discolored material. Prepare 50% PEG by the following procedure: Weigh 20-50 g of PEG 1500 in a 100-ml glass reagent bottle and steam autoclave for 20 minutes at 121-132°C. As the PEG cools but before it solidifies, add a volume of RPMI 1640 (20-25 ml) equal to the number of grams of PEG autoclaved. Mix the solution thoroughly. Store the reagent at room temperature. During storage, the 50% PEG solution becomes very alkaline; however, this does not seem to affect the PEG as a fusion agent and nothing should be done to alter the pH.
PROCEDURE

The following description of the fusion procedure takes into account several characteristics of the 50% PEG solution: (1) The PEG solution is hypotonic; (2) proteins precipitate in 50% PEG; and (3) cells are damaged by PEG treatment. The entire procedure takes 6-7 minutes.

1. Warm 30 ml of medium with FCS and 20 ml of serum-free medium to 37°C. Also, warm the 50% PEG solution to 37°C.

2. Make a 37°C water bath using two glass beakers. Place one beaker of water within a larger beaker, also filled with water. Keep this at 37°C until needed.

3. Harvest the NS-1 cells and wash once with serum-free medium at room temperature. Remove spleens from primed mice, as described in Section 1.2. Prepare a cell suspension and wash 3 times in serum-free medium at room temperature.

4. Mix together 1.5×10^8 NS-1 cells and 1.5×10^9 immune spleen cells in a 50-ml centrifuge tube and centrifuge the mixture at 400 × g for 10 minutes at room temperature to form a tight pellet.

5. Remove all supernatant from the pellet and keep the tube at 37°C for further manipulations in the make-shift water bath.

6. Using a 1-ml pipette, add 1 ml of warm 50% PEG over a one-minute period. Gently stir the cell pellet with the tip of the pipette as the PEG is being added. Do not pipet the cell suspension. (A stopwatch is helpful to keep track of time.)

7. Continue to stir the cell pellet for an additional minute. The goal is to expose the cells to the PEG while maintaining as much cell contact as possible. The cell suspension should look like homogeneous clumps of cells.

8. With the same 1-ml pipette, take one minute to stir in 1 ml of serum-free medium that has been warmed to 37°C. Slow addition of warm medium serves to gradually dilute the PEG without lysing the cells.

9. Repeat step 8.

10. Finally, with a 10-ml pipette, stir in 7 ml of 37°C serum-free medium over 2-3 minutes. Continuous stirring motions should be used. (Pipetting the cell suspension must be avoided as this disrupts the cells.)

11. Centrifuge the suspension at 400 × g for 10 minutes at room temperature and remove the supernatant.

12. Fill a 10-ml pipette with 37°C medium with FCS and aim the tip of the pipette at the cell pellet. By releasing the medium directly at the cell pellet and stirring some with the pipette, a suspension of fine cell clumps is obtained.

13. Add an additional 20 ml of warm medium with FCS and swirl the tube to suspend the contents.

14. Avoiding excessive pipetting, plate 0.1 ml of this suspension (10^8 total cells) into each well of three 96-well tissue culture plates. These plates are referred to as the master plates.

15. Place plates into 7% CO₂ incubator at 37°C.
1. The ratio of NS-1 to immune spleen cells in the above protocol is 1:1; however, a ratio of 1:4 (e.g., 4 × 10⁶ NS-1 cells mixed with 1.6 × 10⁶ immune spleen cells plated into two 96-well tissue culture plates) has been successfully used. A ratio of 1:10 can also be used. Whichever ratio and however many total cells are used in the fusion, the critical parameter is to maintain the initial culture density at 10⁶ total cells per 0.1-ml culture well. The day of fusion is referred to as day 0.

2. Individual cultures in Costar plates are more isolated from each other than they are in similar plates from other suppliers. Costar plates, because of their design, provide the least opportunity for contamination and the best opportunity for eliminating it should it occur. If a plate develops mold contamination, the surest way to prevent its spread to other plates is to discard the contaminated plate. However, if the contamination occurs in one or two wells of a plate that contains valuable cultures, an attempt can be made to salvage the remaining cultures in the plate by rinsing the contaminated well 3 times with 5 M NaOH. To avoid contaminating other plates in the CO₂ incubator, isolate the contaminated plate either in a separate incubator or in a humidified culture chamber (Belco Glass, #7741-10005) until it is clear that the mold has been eliminated.

17.4 SELECTION OF HYBRID CELLS (HAT SELECTION)

Cell fusion is a random process and necessitates a means of selecting the desired hybrid cells. Fusion of a population of NS-1 and immune spleen cells results in a mixture of fusion events (NS-1: NS-1, NS-1: spleen, and spleen: spleen cells). Selection of NS-1: spleen cell hybrids is accomplished by culturing the fusion mixture in hypoxanthine-aminopterin-thymidine (HAT) medium. The mechanism of this selection is as follows:

1. Aminopterin (an analog of folic acid) blocks the de novo biosynthesis of purines and pyrimidines. To survive in the presence of aminopterin (as in HAT medium), cells must be able to synthesize these nucleotides by utilizing an exogenous source of hypoxanthine and thymidine (provided in HAT medium). They do this via alternate nucleotide biosynthetic pathways aply called the salvage pathways. (Aminopterin also blocks glycine synthesis, but RPMI 1640 medium supplies enough exogenous glycine to meet this requirement.)

2. NS-1 cells are 8-azaguanine resistant and hence lack an enzyme, hypoxanthine-guanine-phosphoribosyltransferase (HGPRTase), that is required in one of the salvage pathways of nucleotide biosynthesis. NS-1 and NS-1: NS-1 fused cells are therefore not capable of growing when de novo nucleotide synthesis is blocked with HAT medium.

3. Should NS-1 fuse with a normal, albeit antibody-producing spleen cell, the normal cell provides the fused partners with the required enzyme, HGPRTase. This allows the hybrid cell to utilize exogenous hypoxanthine and to grow in HAT medium.

4. There is no positive selection against the growth of infused normal spleen cells and spleen-spleen cell fusions in this scheme; hence it is called half-selection. Passive selection takes place because normal spleen cells have a limited growth potential in culture. By two weeks in culture most spleen cells have died.

5. As a result of this half-selection, the desired NS-1: spleen cell hybrids are selectively grown.
MATERIALS AND REAGENTS

Preparation of 50X HT and HAT Stock Solutions and 1X HT and HAT Media

Supplemented culture medium (see Section 17.2)
Thymidine
Hypoxanthine
Aminopterin

Note: All of the above reagents are available from a number of commercial firms (e.g., Sigma Chemical). Each new batch of reagents should be tested for toxicity before routine use in tissue culture. This is easily done by testing whether the reagent is toxic to a HAT-resistant cell line (e.g., hybridoma cell line developed by HAT selection).

NaOH: 0.1 M (4 g/liter)

HAT Selection
1X HAT medium
1X HT medium
Needle, 1½ in., 21 or 23 gauge, attached to tubing that is connected to an aspirator
Pasteur pipettes and bulb

PROCEDURE

Preparation of 50X HT and HAT Stock Solutions and 1X HT and HAT Media

1. 100X and 50X HT Stock Solutions

Prepare a 100X HT solution by dissolving 0.1361 g hypoxanthine and 0.0388 g thymidine in 100 ml double-distilled water warmed to 70–80°C. The 100X HT stock solution is used in preparing the 50X HAT stock solution (see below). To prepare 50X HT stock solution, dilute the 100X solution to 50X with double-distilled water. Sterilize by membrane filtration (Appendix C.2) and store in aliquots at −20°C. (Four-ml aliquots are prepared in our laboratory for addition to 200-ml medium bottles.)

2. 1000X Aminopterin Stock Solution

Dissolve 17.6 mg aminopterin in 80 ml double-distilled water. If the aminopterin does not dissolve readily, add several ml of 0.1 M NaOH. Bring volume up to 100 ml with double-distilled water. Store the 1000X aminopterin stock in 10-ml aliquots at −20°C.

3. 50X HAT Stock Solution

Combine 100 ml of 100X HT stock, 10 ml of 1000X aminopterin stock, and 90 ml double-distilled water. Sterilize the solution by membrane filtration (Appendix C.2) and store in aliquots at −20°C.
Add the 50X stock to an appropriate amount of supplemented culture medium. When thawing the aliquots of 50X stock, some material may come out of solution. However, this material quickly dissolves when the 50X stocks are added to the culture medium.

HAT Selection

The following procedure describes a progressive HAT selection scheme. Two objectives are accomplished with this protocol: (a) selection for the growth of hybrid cells; and (b) dilution of immunoglobulin produced by spleen cells. The dilution eliminates some false positive test results in the subsequent assessment of antibody production by hybrid cells.

1. On day 1 (i.e., the day after the fusion), add 0.1 ml of 1X HAT medium to each well. This is done with sufficient accuracy by adding 2 drops of HAT medium with a Pasteur pipette.

2. On days 2, 3, 5, 8, and 11, aspirate off half of the medium from each well and add two drops of fresh HAT medium. After day 11, continue to exchange half of the culture fluid with fresh HAT medium every 3-4 days.

Aspirating half of the medium from the wells is done visually. The procedure is made easier by placing one edge of the microwell plate onto the edge of another plate thereby having the plate resting at a slight angle. The aspiration needle can then be applied along the upper side of the well to withdraw half of the volume of the culture medium.

COMMENTS

1. On days 1, 2, and 3 the culture medium will appear quite acidic; thereafter, HAT selection will drastically deplete the cell numbers and the cultures will appear dead. With the aid of an inverted phase-contrast microscope, cells approximately the size of the NS-1 parent can usually be observed growing as colonies among the cellular debris by days 6 and 14 (sometimes, they are not apparent until day 21). Live, growing cells have a distinct appearance with phase-contrast microscopy: bright and translucent. Dead or dying cells appear dark (brown) and opaque. These qualities are not evident without phase-contrast optics.

2. At some point, cells that have grown in HAT medium are transferred to normal medium (RPMI 1640). However, before making this switch, it is necessary for them to grow in HT medium for about one week in order to dilute any remaining intracellular amionopterin. The transfer from HAT medium can be done as early as day 14 but to avoid keeping track of which plates have HAT, HT, and normal media, cells are generally kept in HAT medium until they are transferred from the 96-well plates into 1-ml cultures.

3. As long as the cultures are fed regularly (i.e., with half the medium replaced every 3 days) and not disturbed (i.e., not resuspended), the hybrid cells can remain in the 96-well plates for up to 4 weeks, sometimes even 6 weeks. Successful hybridization will yield growing colonies in every well of the culture plate.
17.5 INITIAL SCREENING TO IDENTIFY CULTURES PRODUCING RELEVANT ANTIBODIES

Between two and four weeks after cell fusion (allowing three to four days after the last medium change for antibody to accumulate), the supernates of cultures are harvested using individual pipettes for each culture plate well. The supernates can be tested undiluted or diluted (e.g., 1:5 or 1:10). Dilution of supernates reduces the likelihood of selecting weakly positive wells that may represent marginal antibody production or simply a high assay background. The type of assay used for antibody detection will depend on the goal of the investigator. It is possible to use cytotoxicity or lytic assays; however, these will only detect complement-fixing antibodies and will miss non-complement-fixing antibodies. Solid-phase antibody-binding or cell-binding assays such as those described in Chapter 18 are recommended. When solid-phase antibody-binding or cell-binding assays are used, it is necessary to control for the detection of non-specific antibody binding (i.e., antibodies that seemingly bind to plastic). Controls for auto-antibodies should be included in work involving alloantigens.

Multiple assays can be done on each supernate to provide an initial characterization of antibody activity; however, such preliminary characterizations may be wasteful of time and effort because many of the positive cultures may fail to yield stable monoclonal antibody-producing cell lines. Whatever detection method is used, the assay must be accurate, reproducible, and rapid, since decisions about which culture wells to save or discard must be made quickly.

17.6 TRANSFER TO ONE-MILLILITER CULTURES

The next step after determining which wells are making antibodies of interest is to transfer the cells into 1-ml cultures in 24-well tissue culture plates. This is the first step in expanding the cell lines for cloning and in generating enough cells for frozen stocks. The transfer is accomplished using BALB/c thymocytes as feeder cells; without thymocyte feeders, most cells will not grow when they are transferred into the 1-ml cultures. BALB/c thymocytes can be used regardless of the H-2 haplotype of the donor spleen cells. (Remember NS-1 is of BALB/c origin.)

MATERIALS AND REAGENTS

Thymocytes (see Section 1.5) from 4-5 week old BALB/c mice (1 thymus/ml of HT medium)
Fetal calf serum (FCS)
Culture medium (see Section 17.2)
HT medium (see Section 17.4)
Dimethyl sulfoxide (DMSO)
24-well tissue culture plates (Costar, #3524; see comment 2, Section 17.3)
Pasteur pipettes and bulb
T Flasks
Liquid nitrogen freezer
Freezing vials (Nunc, #N1076-1)
1. Place 0.5 ml of HT medium into each well of the transfer plate.
2. Remove thymuses from mouse donors and prepare a cell suspension. Wash the thymocytes at least 3 times and resuspend them at a concentration of 1 thymus/ml of HT medium. Using a Pasteur pipette, add 1–2 drops of this cell suspension to each well of the transfer plate (1–2 × 10⁴ thymocytes per well).
3. Resuspend the contents of each antibody-producing master plate well with a Pasteur pipette and transfer the entire suspension into the transfer well containing the thymocytes and HT medium. Resuspend this mixture and then add back 5 drops of this suspension to the original master plate well. This creates duplicate cultures (a master plate and a transfer cell culture), which protects against losing the new cell line.
4. After 2–3 days, feed these cultures an additional 0.5 ml of HT medium (no additional thymocytes are needed).
5. Two days later, feed the cultures again by first removing as much supernate as possible and adding fresh HT medium.
6. When the cells are nearly confluent (about one week), retest the supernate for antibody activity. Because antibody produced in the master plate is carried over into the transfer cultures, it is important to compare titrations of supernate antibody from the master plate and the transfer plate to determine whether the transferred cells are continuing to produce antibody. Residual antibody from the master plate may produce false positive results. (Transferred cells may lose the ability to produce because of a loss of chromosomes, the overgrowth of the culture by non-producing hybrid cells, or overgrowth by hybrid cells producing antibody of another specificity.)
7. If the culture continues to produce the desired antibody, then clone the cell line immediately. A small fraction of the 1-ml culture is used for this purpose; the procedure is described in the next section. If the antibody-producing wells are not numerous, it is possible to clone directly from the master plate. However, cloning from cultures that continue to produce antibody after transfer reduces the likelihood of working with the less stable cell lines.
8. After removing samples for cloning, expand the remaining cultures in order to have enough cells to freeze and store in liquid nitrogen. Do this by placing the remaining portion of the 1-ml culture into a small T flask containing 5 ml of fresh medium (normal medium may be used at this stage). When this culture becomes dense (approximately 1-2 × 10⁵ cells/ml), transfer to a larger tissue culture flask and feed 15 ml of medium.
9. Generally for each 10 ml of culture, one vial of cells is frozen. Centrifuge 10 ml of a growing culture containing a total of approximately 2 × 10⁶ cells. Resuspend the cells in 0.5 ml of 90% FCS, 10% DMSO. Transfer the cells to a freezing vial and immediately begin to freeze the cells either by placing the vials into the gas phase of a liquid nitrogen freezer or by insulating the vials with wrapping material and placing them in a −70°C freezer; transfer the vials to a liquid nitrogen freezer after 24 hours.
10. To retrieve frozen cells, thaw the cells quickly and wash immediately with 10 ml of medium. After this wash, resuspend the cells in 10 ml of medium in a T flask and place in the incubator. Expand thawed cells slowly. Initially split the cultures 1:2 to maintain high cell density (approximately 1-2 × 10⁵ cells/ml) until they fully recover from being frozen.
17.7 CLONING BY LIMITING DILUTION

MATERIALS AND REAGENTS

Thymocytes
Culture medium (see Section 17.2)
HT medium (see Section 17.4), for use only when cloning from master plate
Acridine orange-ethidium bromide (AO/EB), for determining cell viability (Section 1.15)
96-well tissue culture plates (Costar, #3596; see comment 2, Section 17.3)

* Specific antibody-producing hybrid cells can be selected and cloned with the fluorescence-activated cell sorter (FACS: Becton, Dickinson FACS Division). Antigen-coated fluorescent microspheres (0.9 μm) are used to stain hybrid cells producing antibody reactive with the antigen. Using the FACS with some electronic modifications (Parks et al., 1979); antigen-binding hybrid cells are sorted and individually deposited into the wells of a 96-well culture plate with thymocytes (10⁵ cells/well) as feeder cells. When the appropriate antigens are not readily coupled to the microspheres, the FACS can be used to clone cells on the basis of viability. This method has been successfully used to "sorter clone" antibody-producing hybrid cells reactive with mouse immunoglobulin allotypes as early as 16 days after hybridization.

PROCEDURE

The cloning medium consists of 10⁴ thymocytes per ml of 15% FCS in RPMI 1640. (If cloning is done directly from the master plate, HT medium is used; see comment 2, Section 17.4.) The thymocytes act as carrier cells in diluting the hybrid cells and also as feeder cells in culture. Again BALB/c thymocytes are used. The objective is to plate 36 wells of a 96-well tissue culture plate with an average of 5 cells/well, 36 wells with an average of 1 cell/well, and the remaining 24 wells with an average of 0.5 cells/well. One of these plating concentrations will yield wells with monoclonal growth. The dilutions are carried out as follows:

1. Remove samples from the 1-ml cultures and determine the concentration of viable cells by staining with AO/EB (Section 1.15). Trypan blue which is commonly used to determine viability, should be avoided in this instance because the bovine serum albumin in the medium will bind the stain and thereby produce misleading results.

2. Dilute a sample of the culture to be cloned so that 230 live hybrid cells are suspended in 4.6 ml of the thymocyte-containing cloning medium. Plate 36 wells of a 96-well plate with 0.1 ml of this mixture. This will leave 1.0 ml of cell suspension. To this, add an additional 4.0 ml of the thymocyte-containing medium and plate another 26 wells with 0.1 ml. Finally, add 1.4 ml of the thymocyte-containing medium to the remaining cell suspension and plate the last 24 wells.

3. At day 5 and again at day 12, feed the cloning plate by adding 2 drops of medium with a Pasteur pipette. By day 14 the clones should be large enough to test. Depending on culture conditions, cloning efficiencies, and counting and dilution errors, one of the three dilutions plated should yield wells with no growth (e.g., if an average of 1 cell/well is plated, 37% of the wells should have no growth). Wells appearing to be monoclonal are then tested for antibody activity.

4. Transfer 6 positive clones into separate 1-ml cultures with thymocytes as described above (Section 17.6, except with normal medium). Test the supernates for antibody at the end of a week.
5. Transfer at least 2 of the positive clones into 5-ml flasks and further expand the cultures. Freeze cell stocks as soon as possible (at least 6 vials should be frozen for each clone). It is now possible to grow cultures for antibody production as described in Section 17.8.

17.9 ANTIBODY PURIFICATION: PROTEIN
A-SEPHAROSE COLUMN CHROMATOGRAPHY

It is frequently desirable to purify the antibodies synthesized by hybrid cell lines. Several methods of purifying immunoglobulins have been described in Chapters 11 and 12. A recently developed method, which provides rapid purification of immunoglobulins in a single step, utilizes protein A-Sepharose column chromatography. Mouse IgG, IgG, IgG, some IgG, and some IgM will bind to protein A (Goding 1978). Ey et al. (1978) describe in detail the use of various buffers to elute different classes of mouse immunoglobulin. Elution is done by lowering the pH of the protein A column. The majority of mouse immunoglobulins bind to protein A at pH 8.1 and elute from the column at pH 4.3, or higher; thus harsh acidic elution can be avoided.

MATERIALS AND REAGENTS

Protein A-Sepharose CL 4B (Pharmacia Fine Chemicals)
NaN₃, Caution: Sodium azide is extremely toxic.
NaCl, \(M_r = 58.4 \)
NaOH, \(M_r = 40.0 \)
Tris (tris (hydroxymethyl) aminoethane), \(M_r = 121.1 \)
HCl, concentrated
Citric acid monohydrate, \(M_r = 210.15 \)
Trisodium citrate dihydrate, \(M_r = 294.12 \)
NaH₂PO₄, \(M_r = 142.0 \)
NaH₂PO₄, \(M_r = 138.0 \)
Acetic acid, glacial
Glycine-hydrochloride, \(M_r = 111.5 \)
Fraction collector
UV monitor (optional)

Buffers: The molarity of the buffering component may be varied. The important parameter is the pH. Sodium azide may be replaced by any suitable preservative (e.g., pentachlorophenol).

0.05 M Tris, 0.15 M NaCl, 0.02% NaN₃, pH 8.6: For 1 liter of buffer, dissolve 6.06 g of Tris and 8.76 g of NaCl in 800 ml of distilled water. Add 10 M HCl to pH 8.6 and make up the volume to 1 liter with water.

0.05 M phosphate, 0.15 M NaCl, pH 7.0: For 1 liter of buffer, dissolve 2.17 g of Na₂HPO₄, 1.35 g of NaH₂PO₄, and 8.76 g of NaCl in water to 1 liter; buffer pH should be 7.0.

0.05 M citrate, 0.15 M NaCl, pH 5.5: For 1 liter of buffer, dissolve 2.68 g of citric acid monohydrate, 10.96 g of trisodium citrate dihydrate, and 8.76 g of NaCl in water to 1 liter; buffer pH should be 5.5.

0.05 M acetate, 0.15 M NaCl, pH 4.3: For 1 liter of buffer, dissolve 6.8 g of sodium acetate and 8.76 g of NaCl in 800 ml of water. Add acetic acid to pH 4.3 and make up the volume to 1 liter with water.

0.05 M glycine-hydrochloride, 0.15 M NaCl, pH 2.3: For 1 liter of buffer, dissolve 5.6 g of glycine·HCl and 8.76 g of NaCl in 800 ml of water; add 10 M HCl to pH 2.3 and make up the volume to 1 liter with water.
PROCEDURE

Note: Purification is performed at room temperature.

1. Swell 1.5 g protein A-Sepharose CL 4B in Tris-buffered saline, pH 8.6. Pack resin in a suitable column (bed volume is 5–6 ml).
2. Harvest culture supernate and adjust to pH 8.6 by adding dilute NaOH.
3. Apply culture supernate to the protein A column. Wash column with Tris-buffered saline, pH 8.6. (One liter of culture supernate at pH 8.6 containing 10–60 mg of antibody is easily passed through the protein A column.)
4. Carry out step elution with the buffered saline at pH 7.0, 5.5, 4.3, and 2.3 until the hybrid cell antibody is eluted, avoiding low pH buffers whenever possible. A UV monitor is useful in detecting antibody elution from the column.
5. Pool fractions containing antibody and dialyze using an appropriate buffer (e.g., 0.05 M Tris, 0.15 M NaCl, pH 8.1).
6. Regenerate column by washing with the glycine-HCl-buffered saline, pH 2.3, and equilibrating with the Tris-buffered saline, pH 8.6 (including 0.02% NaN3).

COMMENTS

1. Sometimes two protein peaks will be eluted from a supernate from a monoclonal cell line. By all physical criteria, the protein from both elution peaks may be identical. A possible explanation for this result is that protein A has two binding sites of different affinities for immunoglobulin (Lancet et al. 1978), hence elution conditions for a single protein species may require solutions of different pH.
2. When the antibody produced by a hybrid cell line does not bind to protein A, it is generally easier to purify the antibody from the sera of tumor-bearing mice by standard procedures. The disadvantage of this approach is the presence of normal serum immunoglobulin. Naturally occurring antibodies, for example, antiviral antibodies, may be co-purified with the hybrid cell antibody when affinity chromatography purification methods are precluded by the nature of the antigen, such as with cell surface antigens.

17.10 ANTIBODY CHARACTERIZATION

The monoclonal origins of the antibodies produced by hybrid cell lines must be confirmed by demonstrating the production of homogeneous antibody molecules. When NS-1 is used as the parent myeloma, a monoclonal cell line can produce three species of antibodies, because the cells will synthesize the heavy (H) and light (L) chains of the spleen cell parent as well as the MOPC-21 \(\kappa \) chain (K) of NS-1 origin. In the intracellular process of assembling the immunoglobulin, mixed molecules are made and secreted. These occur as the following four-chain species: \(H_LK_\kappa \), \(H_LK_\lambda \), and \(H_K_\kappa \). Of course, antibody activity is limited to the first two species. In the process of selecting antibody-producing clones, it is possible to select, clones that have lost the ability to synthesize the MOPC-21 \(\kappa \) chain. These clones would then produce no mixed molecules, and every immunoglobulin molecule would be an identically active species.

The chain composition of the products of hybrid cell lines can be determined by various gel analyses. A description of these techniques is beyond the scope of this chapter. Two particular systems are recommended and references to these techniques are noted: (1) reducing and nonreducing isoelectric focusing (IEF; Williamson 1978); (2) two-dimensional analyses using a nonequilibrium pH gradient and size separation (see Chapter 19).
When an investigator generates a hybrid cell line producing an antibody that would have utility and interest to the general scientific community, it is urged that the cell line be made available to other investigators through the Cell Distribution Center at the Salk Institute (P.O. Box 1809, San Diego, CA 92112).

The Center already has available hybrid cell lines producing several anti-I-A\(^+\) antibodies (some of which cross-react with I-A antigens of f, r, and s haplotypes), anti-H-\(s^k\), anti-Ig-\(Sa(b)\), and anti-Ig-\(Sh(b)\); by the time this book is published, it will have even more lines available.

REFERENCES

Kearney, J. S., A. Radbruch, and B. Liesegang. A new mouse myeloma cell line which has lost immunoglobulin expression that permits the construction of antibody-secreting hybridomas. Submitted for publication.

