順天堂医学

JUNTEXO MEDICAL JOURNAL

第32巻 4号 (通巻124) 1985年12月

今井健太郎教授記念

特集 分子免疫学の最近の進歩

自己免疫障害・関与するMHC因子の分化

U1型DNAセクソンの免疫学的解析

未解決な蛋白のクローンとそのクローン構造について

トラスフェクションを用いた遺伝子発現機能の解析

14.18抗体をもとにしてトリアノン・ク倫に発現されている

新しい遺伝子について

SRSならびにAKRマウスに自発発生する腫瘍の分子生物学的解剖

TRF4因子のクローニング　

T細胞脱出のリンパ・サイクをコードする遺伝子のクローニングと

生物学的現象

著 者

糖尿病・糖尿病の治療に及ぼす免疫療法の変化

細胞の機能と分子の関係に及ぼす免疫学的解剖

分枝細胞とマクロファージの機能の研究

免疫不全症研究

免疫抑制剤の免疫抑制療法の研究

免疫学の研究

医療プロセス

評価とその応用

血液細胞の製造とその応用

免疫療法の応用

結論

まとめ

編集委員会 1419
順天堂医学会
Introduction

DNA transfection is a powerful tool of gene analysis. Indeed it allows functional studies of genes either from high molecular weight cellular DNA (i.e. in their physiological structure) or cloned in vectors (i.e. amenable to manipulations designed to influence their function). The work described here shows how this technique has been applied to the problem of DNA methylation and gene regulation, to the study of the amplification of surface antigen genes and to gene cloning.

Material and Methods

Cell lines: The human choriocarcinoma cell line Jar was cultured in Waymouth’s medium. Thymidine kinase- cells were cultured in DMEM.

* Department of Genetics, Stanford Medical Center, Stanford, CA 94305, U. S. A. At present: Istituto Mario Negri, via Eritrea 82, 20157 Milano, Italy
** 第28回ご案内学会学術集会（Sept. 18, 1986）
(Oct. 30, 1986受理)

Key words: DNA transfection, FACS, gene amplification, gene cloning

DNA: Most cellular DNA were prepared using the method of lysis by guanidinium thiocyanate followed by cesium chloride banding1. Plasmid DNA was prepared by conventional techniques of centrifugation in ehlidium bromide/cesium chloride gradients.

DNA transfection: Cotransfection by the calcium phosphate precipitation technique was followed6.

Immunofluorescence: Fluorescence analyses and sorts were performed on a FACS II essentially as described9.

Results and Discussion

DNA methylation: Trophoblast cells are among the few nucleated cells in the body that do not express HLA class I antigens. A very tight mechanism of regulation is likely to be responsible of this lack of expression. Since DNA methylation is a covalent modification of the DNA and seems to be a mechanism that cells use to turn off genes irreversibly, we hypothesized that it would prevent the expression of
Table 1 Transfection efficiency of various sources of DNA

<table>
<thead>
<tr>
<th></th>
<th>Jar untreated</th>
<th>Asa-C* 12days</th>
<th>4-6weeks</th>
<th>6-8weeks</th>
<th>Leukocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA</td>
<td>0/16**</td>
<td>4/10</td>
<td>6/13</td>
<td>0/14</td>
<td>6/7</td>
</tr>
<tr>
<td>Leu-2</td>
<td>0/16</td>
<td>4/11</td>
<td>1/1</td>
<td>0/13</td>
<td>15/25</td>
</tr>
</tbody>
</table>

: DNA from Jar cells treated with Asa-C time after the treatment.

**: Number positive/number transfected dishes.

these genes after transfection. The transfectability of HLA class I and of a T cell differentiation antigen (Leu-2) was investigated using DNA from choriocarcinoma cell lines (tumors of trophoblastic origin). DNA from Jar cells did not transfec the antigens studied (Table 1) whereas all the markers were transfected using leukocyte DNA. Intermediate results were obtained using DNA from other choriocarcinoma cell lines (data not shown). Jar cells were treated with azacytidine (Asa-C) to decrease the level of methylation of their DNA. Since culture of the treated cells allows remethylation to occur. DNA were extracted at various time points after the treatment and transfections followed by FACS selection were performed. As shown in Table 1, DNA from Jar cells treated with Asa-C becomes able to transfect HLA class I and Leu-2, but after a period of time in culture it can no longer transfec for these markers. Transfection efficiencies correlate fairly well with the general degree of methylation of the genes. These results indicate that methylation can prevent the expression of genes after transfection and support the idea that this is an important physiological mechanism to prevent expression of these genes in the trophoblast.

Gene amplification: Increase in the number of copies of various genes has been observed in many different kinds of cells including tumors and cell lines in culture. Gene amplification has also been observed in L cells transfected for the Leu-2 gene. The availability of a simplified model of DNA amplification, like the one offered by DNA transfection, would greatly facilitate the study of the basic mechanisms of this phenomenon. Thus we decided to investigate if amplification of transfected surface antigen genes is of common occurrence. L cells expressing the antigens Leu-1, Leu-2, Trop-1 and Trop-2 were selected. The brightest cells of independent transfecants were cloned and the expression of the transfected markers was studied (Table 2). It was observed a high frequency of increased expression for Leu-1 and Leu-2: the frequency was lower for Trop-2 and only one example of increased expression was found for Trop-1. The analysis of the number of copies of the transfected genes is ongoing. However, it is clear that, although increase in expression is possible for all the genes studied, the frequencies are different, possibly reflecting the presence of structural differences among the various genes.

Table 2 Levels of expression of transfected surface antigens.

<table>
<thead>
<tr>
<th></th>
<th>relative amounts of surface antigens*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unchanged</td>
</tr>
<tr>
<td>Leu-1</td>
<td>2/10**</td>
</tr>
<tr>
<td>Leu-2</td>
<td>2/13</td>
</tr>
<tr>
<td>Trop-1</td>
<td>6/7</td>
</tr>
<tr>
<td>Trop-2</td>
<td>3/6</td>
</tr>
</tbody>
</table>

*: The comparison is relative to the cells the clones were derived from.

**: Number of analyzed/total number of transfecants.
Gene cloning: The rationale of our approach is the following. A vector containing sequences of the human BK virus has been shown to replicate as a stable episome in human cells\(^1\). A genomic library will be constructed in a modified version of this vector and will be transfected in human cells. After selection of cells expressing the gene of interest (for example FACS selection of surface antigen genes) a simple Hirt extraction will allow the isolation of the episomal DNA, thus virtually completing the process of cloning. The characteristics of the vector and the influence of different selectable markers on the efficiency of expression of genes subcloned into the vector will be discussed.

References

1) S. Alberti and L. A. Herzenberg (manuscript in preparation).